I think the answer is obvious in this case. My engine "done blown up!" So why not slap a simple
simple remanufactured engine into my FD? As of this webpage writing factory remanufactured engines are running
about $2650. Not bad really. Many of the remanufactured engines are coming with a lot of new parts,
such as new rotor housings, which total in value more than the cost of the remanufactured engine
itself. A deal. Why not have a performance shop rebuild my blown engine?
A few simple reasons; 1) I could build a new (and better) engine for less - provided I didn't make any mistakes of course,
2) I have trust issues...I don't think I've found anyone who I believe can satisfy my OCD nature,
3) I wanted to learn more and have a better understanding of my car, and 4) I believe I could make it better,
more powerful, more reliable, and do it for minimal cost. Ok...on with the show.
By April of 2007 I had begun the process of ressurrecting my FD, "Princess." The engine had been pulled and
the long-block disassembled. Followed by the short-block.
See here
for more on the chronology of the 2 year process.
After the teardown, being careful with every part to avoid denting a flange or critical
mating surface, as suspected the rear rotor was the problem with one chipped apex seal tip and
one other cracked seal. Only the tip of the one seal was missing. I removed the turbine housing
to look at the turbo to see if it had gotten damaged by munching an apex seal tip. No damage
to the turbo – clean as a whistle.
Unfortunately, the rotor housing was not reusable...at least
not by me :-( The rest of the teardown showed everything else to be in good shape. The front
housing had some minor flaking along the edge of the housing. It's still a good housing for a
general street motor but my standards are high and go a little beyond "general street." And
with it all apart it was time to start the nasty and time consuming cleaning process BLECH!
Lots of carb cleaner, lots of brake cleaner, lots of gasket remover, Navel Jelly (phosphoric
acid), brass wire brushes, tooth brushes, various dental picks, used seals for cleaning grooves
(the only way to effectively clean the side seal and apex seal grooves of excess carbon is with
a used seal), several boxes of rubber gloves, etc. etc. A Dremel tool with the small wire
wheels are also very effective at removing carbon from hard to reach places and are gentle enough
to not damage sensitive and critical seal edges) I found most useful the deep stainless steel
trays from food steam tables as good cleaning vessels. They are durable, sturdy (try carrying
a dirty “iron” in a plastic dish washing basin!), do not corrode from the nasty chemicals used,
and come in a variety of sizes for housing/soaking parts. They can be found relatively cheap
off eBay if you can’t get them from someone who works in a restaurant. The time spent prepping
parts for cleaning compared to motor assembly is easily 4:1. Each part as it was cleaned was
coated with a light coat of WD-40 and sealed in a ziplock baggie until it was ready to be
used. On to the rebuild!!!
I’ve always said that I wouldn’t touch the engine in my car unless I had to. Well with
a blown motor now was the opportunity to make some performance “improvements.” What can you do
to improve the performance of a rotary? It pretty much boils down to porting of the intake
and exhaust ports. Yeah you can lighten rotors and mill the housings but this was a little bit
extreme for my “street” engine and beyond my ability...for now at least. Balancing the rotating
assembly will also allow a higher RPM limit and more Hp. Porting involves not only changing
the size and shape of the port itself but also, for the intake ports, the shape of the port
“bowl” and shape of the runner that feeds the “bowl.” The port shape dictates the “timing”
of the engine and also the emissions output, the fuel efficiency, and of course the power
curve and output. For example, bridge ports yield BIG power due to their immense size but only
at extreme RPM levels while barely being able to run at anything below 3000rpm and are far from
really being “streetable,” at least not in my daily commute to work! Likewise the stock port
shape and configuration yield a wide and smooth power-band and are emissions friendly but are so small they become simply
too restrictive to flow anything decent above 9000rpm and start choking power at anything above 6000rpm.
To learn more about porting…READ! There is a ton of info out there, in books and on the
web. Rotary porting is a skill and an art, and in my opinion, learned through practice and
lots of trial and error to reveal the true potential of your engine. I estimate I spent several weeks
reading nothing but porting techniques and trying to find everything I could on the internet. Some scary
things (things only a moron would think would be beneficial) and some good things are to be
found. And some techniques consistently espoused by
several of the more respected rotary builders in the US, Australia, New Zealand, and Europe and
others. In the end I bought medium street porting templates
from Pineapple Racing.
The laser cut stainless steel templates were very well done
and yielded consistent results. The key is that the templates give you the port shape and
location but the “bowl” is all up to the person behind the grinder.
The actual porting I did with a straight cut and round tip carbide cutting bits in
an adjustable speed Dremel tool. I also used various grit sanding wheels in the Dremel.
This is a slow but precise method. I transferred the port shape from the template to the
iron by first coloring the iron with a Sharpie marker then scoring the port outline with an
awl or pick. Then I removed the template and cut the port shape with the carbide cutting
tip. The hard part was then shaping the bowl. Not much I can share other than to be sure
to not remove too much material and cut into the water jacket and try to make sure the “bowls”
in each runner are the same shape/depth/ contour, etc. Next I removed all the excess
casting “flash” and rough sand finish in each of the intake runners…smoothed them out and
in the process made them a bit larger. I opted not for perfectly polished intake ports
and runners but a semi-polished finish to optimize fuel atomization. On the exhaust side
I enlarged the ports by going slightly wider and I cleaned up the discharge runner outside
of the port to smooth flow. The exhaust port is of lesser consequence than the intake ports
on turbocharged engines. With this all said a picture tells a thousand words. What I can
say is that I practiced on several engines and ported at least a dozen irons before I felt
comfortable porting the irons for the engine to go into Princess. Below are images
of the porting work I did for my FD.
In the same vein as porting of the irons’ intake and exhaust ports I also port
matched the LIM and irons. Using the LIM metal gasket I traced the runner port shape
onto both the LIM and respective iron and opened up the port shape on both so that they
matched. Cutting of the aluminum LIM was harder as the aluminum is softer and requires
a slower cutting speed and different bit. It was amazing how uneven and different the port
shapes were on the irons and as compared to the LIM.
Less of a performance improvement and more of a reliability improvement were a few
modifications in the oiling system. I didn’t go so far as to drill and tap the front iron
to deliver oil directly to the rear rotor (front iron oil plug is drilled and tapped and a
dedicated oil hose is then plumbed directly from this location to the rear iron to equalize
oil pressure – no room to run the line on my “street” car but a great mod for a high RPM
race motor) but I did “teardrop” the oil ports on the eccentric shaft (better oil distribution
of oil to the rotor bearings and stationary gear bearings) and hog out and smooth the oil
pump housing and passages. Some suggest replacing the oil jets in the eccentric shaft with
carb jets to increase oil flow but the side effect of unstable oil pressure did not appeal to
me for a street engine so I passed on this mod. I stuffed a small wad of paper towel into the eccentric
shaft oil port to stop the machined metal particles from entering the oil port and shaft interiro.
After careful removal of the plugs the eshaft was thoroughly cleaned. The last thing you want is a small and
hard eshaft chip in your oiling system and royally buggering up a bearing face.
For more specifcs on other aspects of the reconstruction of Princess go to the following pages:
7-UP CLUB
MAIN
OUR "LOCAL7"
COMMUNITY | THE
WORLD OF THE RX-7
This page last updated March 19, 2009